x-note
  • Introduction
  • JavaScript
    • JavaScript 作用域链
    • JavaScript 数据结构与类型
    • JavaScript 原型
    • JavaScript this 关键字
    • JavaScript 函数
    • JavaScript delete 运算符
    • JavaScript 内存管理与垃圾回收
    • JavaScript 严格模式与混乱模式
    • JavaScript 数字精度丢失
    • JavaScript 并发模型
    • 利用原型链实现继承
  • ECMAScript
    • ECMAScript 6 变量及常量的声明
    • ECMAScript 6 变量的解构赋值
    • ECMAScript 6 Promise 对象
    • ECMAScript 6 Symbol
    • ECMAScript 6 Proxy
    • ECMAScript 6 Reflect
    • ECMAScript 6 new.target
    • ECMAScript 6 Set 和 WeakSet
    • ECMAScript 6 Map 和 WeakMap
    • ECMAScript 6 Iterator
    • ECMAScript 6 Generator
    • ECMAScript 6 class
    • ECMAScript 7
    • ECMAScript 8 async 函数
    • ECMAScript 8 内存共享与原子性
    • ECMAScript 8 Others
    • ECMAScript 2018
    • ECMAScript 2019
  • CSS
    • CSS 块格式化上下文(BFC)
    • CSS 盒模型
    • CSS 外边距合并
    • CSS Float
    • CSS Position
    • CSS Border-Image
    • CSS BEM
    • CSS 表布局详解
    • 页面布局之单列布局
    • 页面布局之多列布局
  • React
    • React 组件的生命周期
    • React 虚拟 DOM
    • React Reconciliation
    • React Diff 算法核心
    • React Fiber
    • React Scheduling
    • React Context API
    • React Refs
    • React HMR
    • React Hook
  • VUE
    • VUE 响应式系统
    • VUE 渲染机制
    • 关于 Vue 的思考
  • Webpack
    • Webpack 基本概念
    • Webpack HMR
  • Babel
    • @babel/preset-env
  • WEB
    • WEB 基础知识及概念
      • 屏幕测量单位
      • 重绘与重排
      • 前端模块化系统
      • WEB 客户端存储
      • 浏览器的渲染过程
    • WEB 性能优化
      • WEB 性能指标
      • WEB 图片优化
      • 懒加载资源
    • WEB 安全
      • XSS
      • XSRF
      • 点击劫持
      • 同源策略(Same Origin Policy,SOP)
    • WEB 解决方案
      • webp 兼容方案
      • WEB 拖拽实现方案
    • WEB SEO
  • Git
    • Git 工作流
    • Git 内部原理
  • 传输协议
    • UDP
      • UDP 基本概念
    • TCP
      • TCP 基本概念
    • HTTP
      • HTTP 基础
      • HTTP 缓存
      • HTTP-2
      • HTTP-3
      • HTTPS
      • 自定义 HTTPS 证书
  • Protocol Buffers
    • Protocol Buffers 基础
  • gRPC
    • gRPC 简介
    • gRPC 基础概念
    • GRPC with GraphQL and TypeScript
  • 正则表达式
    • 正则表达式基础
    • 正则表达式的悲观回溯
  • 基础算法
    • 冒泡排序
    • 插入排序
    • 选择排序
    • 快速排序
    • 归并排序
    • 希尔排序
    • 堆排序
    • 桶排序
    • 计数排序
    • 基数排序
    • 二叉树的遍历
    • 动态规划
    • 回溯
  • 压缩算法
    • HPACK
    • QPACK
  • 设计模式
    • DDD
      • 模型元素的模式
    • 常见设计模式
      • 工厂方法
      • 抽象工厂
      • 构造器
      • 原型
      • 单例模式
      • 适配器模式
      • 桥接模式
      • 组合模式
      • 外观模式
      • 享元模式
      • 代理模式
      • 责任链模式
      • 命令模式
      • 迭代器模式
      • 中介者模式
      • 备忘录模式
      • 观察者模式
      • 状态模式
      • 策略模式
      • 模版方法模式
      • 访问者模式
      • 依赖注入
    • MVC
    • MVP
    • MVVM
  • 颜色空间
    • LCH
由 GitBook 提供支持
在本页
  • 适用场景
  • 优/缺点
  • 对比其他模式
  • 实现示例
在GitHub上编辑
  1. 设计模式
  2. 常见设计模式

适配器模式

使接口不兼容的对象能够相互合作

适用场景

  • 希望使用某个类,但是接口与其它代码不兼容

  • 需要复用这一些类,他们处于同一继承体系,并且她们又有了额外的一些共同方法,但这些共同方法不在同一继承体系

优/缺点

优点:

  • 单一原则。接口和数据转换代码从主逻辑中分离

  • 开闭原则。只要客户端代码通过客户端接口与适配器进行交互,你就能在不修改现有客户端代码的情况下在程序中添加新类型的适配器

缺点:

  • 代码整体复杂度增加, 因为你需要新增一系列接口和类。有时直接更改服务类使其与其他代码兼容会更简单。

对比其他模式

  • 桥接模式通常会于开发前期进行设计,使你能够将程序的各个部分独立开来以便开发。另一方面,适配器模式通常在已有程序中使用, 让相互不兼容的类能很好地合作。

  • 适配器可以对已有对象的接口进行修改,装饰模式则能在不改变对象接口的前提下强化对象功能。此外,装饰还支持递归组合,适配器则无法实现。

  • 适配器能为被封装对象提供不同的接口,代理模式能为对象提供相同的接口,装饰则能为对象提供加强的接口。

  • 外观模式为现有对象定义了一个新接口,适配器则会试图运用已有的接口。适配器通常只封装一个对象,外观通常会作用于整个对象子系统上。

  • 桥接、 状态模式和策略模式(在某种程度上包括适配器)模式的接口非常相似。实际上,它们都基于组合模式——即将工作委派给其他对象,不过也各自解决了不同的问题。模式并不只是以特定方式组织代码的配方,你还可以使用它们来和其他开发者讨论模式所解决的问题。

实现示例

class RoundHole {
  getRadius() {}
  fits(peg: RoundPge) {
    return this.getRadius() >= pge.getRadius();
  }
}

class RoundPeg {
  getRadius() {}
}

// 不兼容类型
class SquarePeg {
  getWidth(): number {}
}

class SquarePegAdapter extends RoundPeg {
  private peg: SquarePeg;

  constructor(peg: SquarePeg) {
    this.peg = peg;
  }

  getRadius() {
    return (peg.getWidth() * Math.sqrt(2)) / 2;
  }
}
上一页单例模式下一页桥接模式

最后更新于1年前